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Abstract

Two, full size, reinforced concrete frames were put on a shaking table and underwent seismic excitations with increasing intensities. The
aim of the reported experiment was to study changes in their dynamic, modal parameters due to development of cracks in concrete. Dynamic
identification of these frames was carried out through diagnostic tests interlaced with the damaging excitations. This paper presents the results of
their identification in various states of damage, using low level non-destructive damage estimation methods. A characteristic decrease of natural
frequencies and an increase of structural damping was observed. The drop of the natural frequency was fastest for the 1st mode and slower for the
further modes. It was noted that the loss of natural frequencies equaled about 10% and still the first cracks could not be visually detected (loss of
stiffness 15%). The advantages and disadvantages of the application of a shaking table for modal analyses of full size, civil engineering structures
are pointed out in detail.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Reinforced concrete (r/c) structures are often exploited as
partly cracked. Typical examples are r/c bridges for which
the cracks develop gradually from the moment when they are
erected as the result of sudden overloading, seismic effects
(e.g. [21]), corrosion, excessive temperature effects etc. There
is also an opposite phenomenon as concrete strength increases
over many years after casting (see e.g. [3]). As an effect the
actual, overall elastic properties of r/c structures are difficult
to predict. Since some of the r/c structures have suddenly
crumbled or had to be put out of operation without an early
warning, the problems of Non-destructive Damage Evaluation
(NDE) of these structures become more and more important.
During the last 20 years methods of system identification and
modal analysis developed into quite a large interdisciplinary
field, [7,12], covering also the NDE problems. For example for
the rotating machines it is now routine to detect their damage
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even without taking them out of service (e.g. [20]). However
practical application of these methods for large engineering
structures met some difficulties (see Los Alamos state of the art
reports — by Doebling et al. [6] and Sohn et al. [17]). In spite of
this, the search for implementation of these methods continues
(see e.g. the state of the art review by Salawu [16]). For the
reinforced concrete structures it started as early as in the fifties
of the 20th century [15], but more experimental research took
place from the early eighties. For example, Wang et al. [19]
experimented with impact tests on small beams (61 cm) with
various boundary conditions. They noted a 25% drop of the
natural frequencies and a substantial increase of structural
damping. Maeck and De Roeck [11] investigated 6 m long r/c
beams after statically imposed damage at several levels. They
included an analysis of the curvature of the beams as well as
investigations of bending and reduction of torsional stiffness
with the developed damage. They noted a drop of stiffness
reaching 50% and 40% for bending and torsional stiffness
respectively. Recently Ndambi et al. [14] carried out an analysis
also of 6 m long r/c beams but with the general aim of localizing
the statically inflicted damage. They studied the applicability
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of classic modal damage indicators like MAC — Modal
Assurance Criterion (see Eq. (3)) and COMAC (Coordinate
MAC). Although the MAC could reveal the symmetry or
asymmetry in the damage location and COMAC might help
to detect and localize the damage more precisely, effects
such as the damage severity and spreading were difficult to
reflect. Ndambi et al. [14] found that the damage indices such
as the strain energy methods are very promising in damage
monitoring, but concluded that still the frequency drop seemed
to be the best measure of damage severity.

The purpose of this paper is to report the results of
an experiment on a reinforced concrete structure tested on
a MASTER shaking table in CESI-ISMES, Bergamo, Italy.
Unlike the research mentioned before, the examined structure
was a 12 ton frame vibrating in two dimensions in the horizontal
plane. The structure was subjected to distributed damage due
to progressively increasing inertial loads applied by kinematic
motion of the shaking table. Though such an approach excluded
any detailed studies of localization effects it enabled us to
investigate dynamic behavior of full scale r/c structures in
various damage states in the laboratory environment.

2. Statement of the problem

Consider the familiar, linear dynamic equation of motion of
discrete dynamic systems

Mq̈ + Cq̇ + Kq = F(t) (1)

in which matrices M, C and K stand for the matrices of
inertia, damping and stiffness respectively, q = q(t) is the
vector of system displacements and F(t) stands for the vector
of external forces exciting the structure. A typical purpose
of linear structural identification is to find the properties of
a dynamic system described by matrices M, C, K given the
measured response vector q and excitation vector F. In reality,
due to the non-uniqueness of the inverse problem, a reduced set
of parameters describing the structural properties is searched
for. Typical examples of such identifications are modal models
described by a limited number of natural modes, their damping
ratios and modal participation factors.

Consider now the equations of the eigenproblem

Mq̈ + Kq = 0 (2a)
det(K − ω2M) = 0 (2b)
(K − ω2

i M)wi = 0. (2c)

In its simplest form the identification problem deals with
the relationship between the matrices of inertia and stiffness
on the one side and solutions of the eigenproblem i.e. natural
frequencies ωi [rad/s], fi [Hz] and eigenvectors wi on the
other side. While it is a simple matter to calculate the natural
frequencies and eigenvectors from the known matrices M and
K it is more difficult to deduce about the changes in matrix
K by observing the variations in the natural frequencies and
eigenvectors which is the subject of dynamic identification and
damage detection. To quantify differences between analytical
and experimental mode shapes as well as between respective

mode shapes of intact and damaged structures, the so-called
Modal Assurance Criterion (MAC) was proposed (e.g. [7,12]).
It can be obtained by calculating the following formula:
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in which superscript (a) over the mode “w” describes an
analytical, natural mode, while superscript (e) describes a
respective experimental mode. The formula (3) can also be used
to compare mode shapes of intact and damaged structures.

The analyses of the elastic properties of reinforced concrete
structures revealed that due to inherent cracks appearing during
their exploitation the variations of effective stiffness of r/c
structural members can be quite substantial. Early experiments
by Franz and Brenner in 1967 [9] or recent theoretical
investigations by Jędrzejczak and Knauff in 1997 [10] proved
that from the intact state, when concrete beams under bending
behave linearly, until they are considered damaged, the loss
of their stiffness may reach 50% to 60%. Such substantial
variations in their effective elastic properties make the r/c
structures particularly convenient for assessing their properties
by measuring forced, low level vibrations and, in particular, by
observing changes in their natural frequencies and eigenvectors.
The experiment described in this paper aimed at studying such
dependence between dynamic properties of a r/c structure and
its damage states.

3. Description of the experiment

Figs. 1 and 2 present a photograph and general view of one
of the two reinforced concrete frames under investigation. The
two frames were designed as identical, 415 cm high, with the
columns fixed in the lower spandrel beams. The horizontal
overall dimensions of each structure equaled 340 × 340 cm
with one symmetry axis along the x direction. The frame was
built of two types of columns with rectangular cross-sections
20×20 cm and 20×40 cm with main reinforcing bars Ø10 mm
and stirrups made of bars Ø8 mm (Fig. 3). The distance of the
stirrups equaled 15 cm at the 90 cm upper and lower sections of
the columns and 30 cm in the mid-section (see photo in Fig. 4).
The thickness of the upper r/c slab equaled 15 cm. Total mass
of each frame equaled about 12 tons. For this type of frame
three basic natural mode shapes of lateral vibrations can be
distinguished:

• two translations along x and y axes
• and torsion about vertical axis z.

In addition, higher natural modes of vibration, representing
single motions of columns, can be observed. However, as was
revealed for these frames by FEM analyses, such modes were
over 60 Hz frequency and presented a minor contribution in
structural response. To properly separate the first three natural
frequencies, a special, additional mass was mounted off-center,
on the top of the slab (see Fig. 2). Both r/c frames, denoted
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Fig. 1. Photograph showing one of the analysed r/c frames on the shaking table.

here as frame no. 1 and frame no. 2, were erected in the main
CESI-ISMES experimental hall. After 28 days each frame was
transported on the shaking table and fixed by bolts Ø 50 mm
with distance 30 cm. Concrete samples from both frames
were taken during casting and subjected to standard tests for
compressive strength. The frames were instrumented using
accelerometers A1–A16 as well as displacement transducers
W1–W15 measuring the strain of the columns.

The dynamic analyses started from a set of diagnostic, low
level tests on intact frame no. 1:

• First the frame was subjected to impulse loads.
• Next the sweep-sine resonance tests were done by the

shaking table.
• Next white noise excitations were carried out.
• Finally respective low level seismic excitations were done,

for which an artificially generated accelerogram of an
earthquake was applied (Fig. 5).

After the intact structure was extensively examined, a series
of seismic tests with increasing intensity was carried out. This
was done by applying the same seismic signal multiplied by an
increasing factor which resulted with shaking table excitations
with peak (ground) accelerations (PGA) from about 0.15g to
1.1g (g = 9.81 m/s2). The damaging tests were interlaced with
low level diagnostic tests described above. The acceleration
records chosen for both damaging and diagnostic excitations
were simulated to represent a broad-band seismic spectrum (see
Fourier spectra from Fig. 5).

Fig. 2. General view of the analysed frame(s) with the locations of
accelerometers (A), displacement transducers (W), and places where impulse
loads were exerted (F).

Fig. 3. Cross-sections of columns of the analysed frames.

Fig. 4. Detail of the reinforcement.



Z. Zembaty et al. / Engineering Structures 28 (2006) 668–681 671

Fig. 5. Seismic records of accelerations along x and y axes (a, c) and their Fourier spectra (b, d) applied to damage the frames and for diagnostic purposes.

4. CESI-ISMES “MASTER” shaking table

The CESI-ISMES “MASTER” shaking table is a 4 × 4 m
platform of welded steel plates which can move in 6 degrees
of freedom (3 translations — x , y, z and 3 rotations about
these axes). A mechanism of 8 actuators driven by oil pumps
and a partially automatic control system allows the table
to reach maximum overturning moment of 300 kNm and
maximum mass of specimen statically compensated equal to
50 tons. However, for controlled dynamic tests the mass of the
tested specimen should be lower. The actual maximum peak
accelerations possible to achieve depend on the model mass
and geometry, as well as on the time history to reproduce.
The most difficult problem for all 6-dofs shaking tables is how
to ensure proper reproduction of the required time history for
heavy models which may cause substantial vibration interaction
with the vibrating platform. This problem is called table–model
interaction and is similar to the well known soil–structure
interaction effect. The strongest, unwanted effect to deal
with is the spurious rocking appearing in the vibrations of
the model–table system. The mass of the specimen in this
experiment was equal to 12 tons and its height of about 4 m was
not substantial so there was no problem for the control software
of the table to properly reproduce the applied accelerogram
without inducing any rocking. However, since the mass of
the vibrating parts of the shaking table equals about 11 tons

(shaking platform and actuators) which is almost the same as
the mass of the specimen, the dynamic system representing the
specimen and the table was introducing substantial, additional
damping coming from the actuators. This damping cannot be
compensated for, unless the ratio of the mass of the specimen
and shaking table is substantially low.

5. Identification techniques

The main purpose of the experiment was to investigate
changes in the dynamic properties of the model structure using
low level, diagnostic excitations or ambient vibrations. That is
why the identification techniques were chosen from the classic,
linear methods, suitable to apply during or before shaking table
experiments:

5.1. Impact tests

The impact tests were done using a wooden beam hanging on
an overhead crane so the resulting impulses were not measured,
but they were kept rather small. The points where the impacts
were exerted are denoted as F1–F3 in Fig. 2. The damping
coefficient was calculated from these records of free vibrations
which displayed clear, single mode responses. The calculations
were carried out directly from the measured decay rate [4].

ξ ∼=
an − an+ j

2π jan+ j
(4)
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where an and an+ j denote the amplitude after n cycles and
n + j cycles respectively. It should be noted that unlike for
the other methods of identification the damping obtained during
impact tests was not affected by the bias from table–structure
interaction. Next the Fourier transforms of the free vibration
signals were computed to obtain the resonance frequencies by
the peak picking technique.

5.2. Sweep-sine tests

The sweep-sine tests were carried out by kinematic,
harmonic motion of the shaking table in one, selected
horizontal (x, y) direction. The amplitude of the harmonic
accelerations equaled about 0.05g. During the tests the
frequency of excitation was slowly increasing from 0.5 Hz until
70 Hz. The amplitudes and phases from all the sensors were
recorded. When the harmonic excitations were reaching natural
frequencies the vibrations of the frame displayed respective
natural modes. These vibrations were however too fast and
too small to be visually observed, but they could be retrieved
from the recorded phases and amplitudes. For this purpose
a special program was written in the Matlab language. It
displayed on a computer screen animated vibrations of the
frames in respective resonances. In addition the natural modes
retrieved from sweep-sine tests can quantitatively be compared
with the analytical ones (Eq. (2)) or between the damaged
and intact ones, using the MAC coefficient (Eq. (3)). The
damping ratios were obtained from plots of the modulus of
the transfer functions by applying the familiar method of half
power bandwidth [4].

5.3. Random tests

Another test aiming at retrieving the transfer function of the
structure (transmittance) was carried out by exciting low level,
band limited white noise vibrations of the shaking table along
selected horizontal directions. The test lasted several minutes
so that steady state, stationary vibrations were excited, during
which it was possible to observe “on line” the shape of the
transfer function Hqi u(ω), from the following formula [2]:

Hqiu(ω) =
Sqi u(ω)

Su(ω)
(5)

in which Sqi u(ω) is the co-spectral density of the signal
measured for excitation channel u and response channel qi ,
while Su(ω) is the respective auto spectrum of the excitation
process and ω is angular frequency [rad/s]. The analysed,
stationary structural response was analysed in time windows
of duration 10.24 s from which the spectral densities were
obtained by time averaging. The natural frequencies were
observed by peak picking and respective damping ratios were
calculated by applying the half-power bandwidth method.

5.4. Dynamic identification from time history response and
excitation records (seismic tests)

Consider a structure under two-component, horizontal
excitations (Fig. 6). The equation of motion of this structure

Fig. 6. A structure under two-component seismic excitation.

discretized by applying FEM techniques takes the following
form:

Mq̈ + Cq̇ + Kq = −Mr
{

üx(t)
ü y(t)

}

(6)

in which ux(t) and u y(t) are the horizontal components of
excitation and r is the special influence matrix
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with elements in the first column equal to 1 for degrees of
freedom parallel to the x axis and 0 for the perpendicular
ones. Analogously the second column contains unit elements
for the degrees of freedom parallel to the y axis and 0 for the
perpendicular. For example, in the above equation qi is parallel
to the x axis and qi+1 is parallel to the y axis.

Introducing the modal transformation and applying Fourier
transforms makes it possible to present the response of the i -th
dynamic degree of freedom as a sum of contributions from each
vibration mode and both excitations:

Qi (ω) = Al(ω) + ω2
∞
∑

k=1
βk

ix Hk(ω, ωk , ξk)Ax(ω)

+ ω2
∞
∑

k=1
βk

iy Hk(ω, ωk , ξk)Ay(ω),

where l =

{

x for qi ‖ x
y for qi ‖ y (8)
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Table 1
Concrete properties and dynamic characteristics of intact frames

Compressive concrete strength (MPa) Young’s modulus of concrete (MPa) f1 (Hz) direction x f2 (Hz) direction y f3 (Hz) torsion

Frame no. 1 32.76 30 248 4.81 5.89 10.47
Frame no. 2 36.65 31 527 4.88 5.98 10.58

where Qi (ω) is the i -th response in the frequency domain, βk
ix ,

βk
iy are the effective modal participation factors, Ax(ω), Ay(ω)

are the Fourier transforms of the excitation accelerations and

Hk(ω) =
1

ω2
k − ω2 + 2iξkωkω

(9)

is the frequency response function of the k-th mode of vibration.
The effective modal coefficient βk

ix describes the actual
contribution of excitation along the x axis in the vibrations of
the i -th co-ordinate (i -th measuring channel) vibrating in the
k-th mode. Analogously the coefficient βk

iy is a measure of the
contribution of excitation along the y axis in the vibrations of
the i -th co-ordinate vibrating in the k-th mode.

Eq. (8) defines the modal model. There are four parameters
to identify for each mode k:

• natural frequency ωk ,
• modal damping ratio ξk and
• two effective modal participation factors βk

ix and βk
iy .

To identify all three dominating modes of the analyzed frame
4 ∗ 3 = 12 parameters will have to be computed. The
identification can be performed by minimizing the mean square
difference between Fourier transforms of measured signals
m Qi (ω) and responses Qi (ω) calculated in terms of Fourier
transforms of excitations Ax(ω), Ay(ω), using Eq. (8). This can
be done by minimizing the following functional:

J =

∫ ωe

ωb

|Qi (ω) − m Qi (ω)|2dω. (10)

The minimization of functional (10) can be done by applying a
classic quasi-Newton approach together with the search in one
dimension, the Davidon–Fletcher–Powell algorithm: [5,8]. This
method requires the initial approximation and gradient vector
to be calculated in every step of the routine. Transforming the
response given by Eq. (8) back to the time domain (Eq. (11))
gives the actual response time history which can be compared
with the measured response:

x(t) =
1

2π

∫ +∞

−∞

X (ω)eiωt dω. (11)

The identification method described above is based on
classic approaches developed by Beck [1] and McVerry [13].
Detailed derivation of the extension of this method to 2D
kinematic excitations can be found in the paper by Zembaty and
Kowalski [22] together with its application to identification of
masonry structures subjected to shaking table excitations. The
above algorithm for “seismic” identification of structures was
implemented as Fortran code.

Table 2
Values of MAC coefficient for experimental vs. analytical modes of intact
frame 2

Analytical modes
1 2 3

Experimental modes
1 0.9999 0.0177 5.53E-4
2 0.0135 0.9278 0.0073
3 5.28E-4 0.1162 0.9999

Table 3
Damping ratio of intact frames

From free
vibrations along
direction x

From free
vibrations along
direction y

From free
torsional
vibrations

ξ ξ ξ

Frame no. 1 1.81% – 1.95%
Frame no. 2 – 2.15% –

6. Results of tests for intact frames

In Tables 1–3 results of the tests of intact frames are shown.
Table 1 shows concrete strength and Young’s modulus as well
as resonance frequencies measured during impact tests. It can
be seen from this table that as the concrete of the second
frame is stronger and has a greater Young’s modulus value, the
respective natural frequencies, as could be expected, are shifted
by about 2% in accordance with the respective ratios of the
square roots of E . The presence of at least three horizontal
accelerometers on the upper slab made it possible to obtain
images of the mode shapes from sweep-sine tests by applying
a specially written for this purpose Matlab program, described
earlier. In Figs. 7–11 these mode shapes are shown as excited
by kinematic motions along the x and y axes. It can be seen
that the stiffness symmetry along the x axis results in an almost
symmetrical mode along the x axis. On the other hand, the
differences in symmetry with respect to the y axis resulted in
the pendulum-like shape of the second natural mode. Obviously
the excitations along the y axis more clearly excited the second
natural mode. The torsional resonance motion was obtained
from both directions of excitations. The Matlab generated
animations of these modes were compared with their respective
eigenmodes generated by FEM. In Table 2 a MAC comparison
(Eq. (3)) between experimental and analytical mode shapes
is shown for frame 1. A very good match could be observed
both from the animations and MAC matrix. Table 2 indicates
however some small coupling between the 2nd (along the y
axis) and the 3rd (torsional) mode.

Table 3, in turn, presents respective damping ratios obtained
from free vibrations during impact tests and calculated by
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Fig. 7. Shape of the first natural mode (in intact state) identified from sweep-
sine tests with excitation along the x direction.

Fig. 8. Shape of the second natural mode (in intact state) identified from sweep-
sine tests with excitation along the x direction.

Eq. (4), in cases when single mode, free vibrations could
clearly be detected. The maximum accelerations of the upper
slab during these free vibrations equaled about 40 cm/s2 and
0.02 cm of displacements. The time domain window covering
j peaks for Eq. (4) was shifted along the time axis and the
differences in the obtained damping ratio were negligible. The
damping ratios of about 2%, typical for r/c structures, are
noted.

The application of identification from time history records
of excitation and response led to the results shown in Fig. 12.
A good match between the response measured and computed
(Eq. (8)) can be seen. The identification process ended after 93
iterations of the minimization algorithm.

Fig. 9. Shape of the third natural mode (in intact state) identified from sweep-
sine tests with excitation along the x direction.

Fig. 10. Shape of the second natural mode (in intact state) identified from
sweep-sine tests with excitation along the y direction.

7. Frames under progressive damage

Each state of damage inflicted by the strong motion
excitations was followed by an inspection and careful
documentation of the eventual cracks which were marked on
the concrete surface using different color markers depending
on the level of excitations. Next these damages were drawn
in the special protocols. In Figs. 13–17 the protocols of the
damage for column no. 2 of frame 2 are shown as an example.
Characteristic, dominating distance between cracks of 15 cm
can be seen. It equals the distance between respective stirrups.
In Fig. 18 a photograph displaying damaged detail and color-
marked cracks is shown. After each inspection of damage,
low level, diagnostic excitations (as for the intact frame) were
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Table 4
Consecutive phases of damage for frame no. 2

Level of excitation and damage Description of damage
Damage state Signal amplification MM intensity

Peak horizontal accel./velocity

“N” not damaged −12 dB
PGA = 35.6 cm/s2

PGV = 1.63 cm/s

III + (3.37) Intact frame

State I 0 dB
PGA = 142 cm/s2

PGV = 6.08 cm/s

VI − (5.65) No visible damage

State II 6 dB
PGA = 319 cm/s2

PGV = 11.2 cm/s

VII − (6.72) First, horizontal cracks are observed. For columns with greater
cross-section only at the lower spandrel beams, for columns
with smaller cross-section the cracks are visible also at the
upper part

State III 9 dB
PGA = 413 cm/s2

PGV = 16.9 cm/s

VII + (7.44) Existing cracks are developed. New cracks appear in the upper
part of columns with greater cross-sections

State IV 12 dB
PGA = 654 cm/s2

PGV = 23.8 cm/s

VIII (8.02) Further development of the existing cracks. Extensions of
upper and lower crack zones. Average distance between cracks
about 15 cm (the same as the distance between stirrups).

State V (14 dB)
PGA = 843 cm/s2

PGV = 29.3 cm/s

VIII + (8.39) Further propagation of existing cracks and appearance of
inclined cracks

State VI (16 dB)
PGA = 1090 cm/s2

PGV = 38.2 cm/s

IX − (8.85) Small parts of concrete are falling, exposing the reinforcement
in the upper parts of columns

Fig. 11. Shape of the third natural mode (in intact state) identified from sweep-
sine tests with excitation along the y direction.

carried out to investigate the changes done to modal properties
of the frame. The cycle of interlaced strong and low level
excitations ended when the frame was substantially damaged.
A similar program of tests was carried out with minor changes
for frame no. 2. In the case of the second frame experience
gained during the first experiment was taken into account.
The damage sequence of frame number 1 revealed a need
to add an intermediate level of damaging excitations before
the first cracks appeared. However the final test results as

obtained in various states of damage did not differ between
both frames. But since for the second frame one additional
damage level was included then all the results shown in this
paper refer to frame no. 2 unless stated otherwise. In Table 4
the detailed sequence of the tests of frame no. 2 is shown
and explained. To describe better the excitations reached at
the shaking table at various damage levels Table 4 includes
maximum accelerations (PGA) and velocities (PGV) obtained
as horizontal maxima i.e. max

√

x2 + y2, and an assessment
of Modified Mercalli (MM) intensity obtained on the shaking
table. For the earthquake with broad-band spectrum and long
duration (Fig. 5) a good match between MM intensity (IMM)

and peak velocity (v) can be obtained. Using the Trifunac
and Brady [18] formula: log10 v = 0.25IMM − 0.63, [v =

cm/s], respective MM intensities were calculated (numbers in
parentheses) and rounded to full values expressed in Roman
numbers, with +/- signs displaying slightly lower or greater
values.

In Figs. 19–21 the plots of frequency response functions
as obtained from different accelerometers during random tests
are shown for various levels of inflicted damage. As more
and more cracks were appearing, the natural frequencies were
getting lower and lower. Accelerometer A22 parallel to the x
axis displays only the changes in the first natural frequency.
On the other hand the frequency response function obtained
from accelerometer A23 parallel to the y axis shows changes
of both the second mode along the y axis and the 3rd torsional
mode. This is due to lack of symmetry in stiffness with respect
to the y axis and from small coupling of the 2nd mode with
torsion (see MAC value from Table 2). It is however interesting
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Table 5
Selected natural frequencies of frame no. 2 identified during tests: “random”, “sweep-sine” and “seismic” (description of damages I–VI: Table 4 and Figs. 13–17)

State Random Sweep-sine Seismic
f1 (Hz) f2 (Hz) f3 (Hz) f1 (Hz) f2 (Hz) f3 (Hz) f1 (Hz) f2 (Hz) f3 (Hz)
A22‖x A30‖x A23‖y A23‖y A22‖x A30‖x A23‖y A23‖y A22‖x A30‖x A23‖y A23‖y

N 4.69 4.69 5.32 10.16 4.67 4.67 5.55 10.16 4.45 4.47 5.14 9.69
I 4.20 4.20 4.98 9.77 3.92 3.92 4.80 9.23 3.96 3.96 4.72 9.10
II 2.83 2.83 3.61 7.42 2.46 2.46 3.20 6.86 2.49 2.49 3.30 –
III 2.44 2.44 3.22 6.54 2.07 2.07 2.82 5.89 2.09 2.10 2.84 –
IV 2.09 2.09 2.54 5.47 1.76 1.76 2.21 4.70 1.81 1.81 2.27 –
V 1.76 1.76 2.15 4.69 – – – – – – – –
VI 1.46 1.46 1.86 3.81 – – – – – – – –

Fig. 12. Results of identification of intact frame 2 from time history records of
excitation and response.

to note that with the level of damaging excitations described
as “I” in Table 4 (PGV = 6.08 cm/s) the loss of frequency
reached about 10% still without visual detection of cracks
on the surface of the frame. This shows a good potential for
the methods of damage detection in r/c structures based on
measurements of changes in their natural frequencies. On the
other hand, it can be seen from Figs. 19 and 20 that at least
one additional level of excitation with PGV of about 8 cm/s
should have been added to the sequence of experiments as it
would show better the moment when the first cracks could be
seen on the concrete surface. In Table 5 various approximations
of the natural frequencies for frame 2 in progressive damage
are shown. Not all the methods enabled identification of the

Fig. 13. Damage of column no. 2 of frame no. 2 after excitation at level of 6 dB
(State II).

three, prominent natural frequencies. In particular the “seismic”
identification which enabled identifying all three modes of
intact frames failed to identify modes for the accelerometers not
parallel to the identified mode as well as the torsion mode. All
three modes in one run of the seismic identification algorithm
could be identified only for intact (state N) and the first stage
of damage (state I). Clearly the “seismic” algorithm should
be further modified to properly take into account the non-
linearities introduced in even low level vibrations by cracks
made in the concrete.

When normalized to a common value of 100% at intact,
the relative loss of natural frequencies revealed that the loss of
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Fig. 14. Damage of column no. 2 of frame no. 2 after excitation at level of 9 dB
(State III).

frequency was the fastest for the first natural mode, slower for
the 2nd mode and the slowest for the torsional mode as can be
seen from Fig. 21. In this figure the shaded area indicates loss
of natural frequencies not reflected by the visible presence of
cracks.

The fall of natural frequencies with the increasing damage
is a direct result of the bending stiffness loss for all the four
columns. Since the damage was rather uniformly distributed
among all the columns one may calculate the average loss of
stiffness of the columns. This was done using a simplified, 3-
dof model of the frame (Fig. 22). The equation of undamped,
free vibrations of this system takes the following form:

Mq̈ + Kq =





m 0 −emd
0 m emd

−emd emd Jϕ









q̈x
q̈y
q̈ϕ





+
EJ
h3





72 0 0
0 216 84B
0 84B 54A2 + 18B2









qx
qy
qϕ



 = 0 (12)

in which m is the mass of the slab (including the additional
mass md and half of the masses of the columns) and e is
eccentricity of the mass md . Stiffness EJ is the smallest bending
stiffness among all the columns (columns C3 & C4 from
Fig. 22 and cross-section on the left in Fig. 3). As a result

Fig. 15. Damage of column no. 2 of frame no. 2 after excitation at level of
12 dB (State IV).

the stiffness matrix was formulated in terms of “ comparative”
stiffness EJ. The obvious simplification of this model derives
not only from just 3-dof of this system, but also from the
assumed fixed–fixed column boundary conditions in the slab
and the lower spandrel. More detailed FEM computations
revealed about 25% rotational flexibility of the upper end of the
columns compared to about 2% rotational flexibility of their
lower ends. This bias in column flexibility assumed for the
simplified model of the structure from Fig. 22 (Eq. (12)) does
not affect the proportions of the three natural frequencies of this
system which are important to calculate average loss of column
stiffness. In Fig. 23 the drop of “ comparative” stiffness EJ is
shown as a function of the damage inflicted to the structure.
This drop was calculated by finding the best match of the first
three measured natural frequencies with the ones obtained by
solving Eq. (12). It was obtained by minimizing the following
equation:

3
∑

i=1
( f m

i − f c
i (EJ))2 = min, i = x, y, ϕ (13)

in which the superscript m stands for ‘measured’ natural
frequencies while c stands for the calculated ones. From Fig. 23
about 15% drop of stiffness is observed before the cracks are
visually detected.
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Fig. 16. Damage of column no. 2 of frame no. 2 after excitation at level of
14 dB (State V).

Table 6
The values of MAC coefficients (damaged vs. intact frame)

Experimental mode
shapes
(Intact state)
1 2 3

Experimental mode shapes

State I
1 0.999 0.021 0.001
2 0.010 0.981 0.005
3 0.000 0.044 1.000

State II
1 1.000 0.005 0.000
2 0.020 0.920 0.002
3 0.001 0.121 0.999

State III
1 1.000 0.012 0.000
2 0.017 0.923 0.001
3 0.001 0.122 0.998

State IV
1 0.999 0.009 0.000
2 0.023 0.913 0.001
3 0.001 0.133 0.997

As the full results of the sweep-sine tests were available for
most of the damaged states, the eigenmodes at different states
of damage were also analyzed. Their comparison with the ones
from the intact state could not reveal clear differences except
for a slight difference of the first mode at damage state IV
(Fig. 24). This is also confirmed by the MAC values comparing
the intact experimental eigenmodes with the experimental

Fig. 17. Damage of column no. 2 of frame no. 2 after excitation at level of
16 dB (State VI).

modes obtained from sweep-sine tests for the damaged frame
(Table 6).

The effect of damage on the structural damping was checked
by the method of half power bandwidth from modulus of
frequency response function either from random tests or sweep
sine tests. However due to interaction of the analyzed frame
with the system of actuators supporting the shaking table,
substantial bias was introduced to such estimated damping
ratios. The damping ratio ξ obtained this way equaled about
4.5% for the frame in intact state as compare with ξ about 2%
obtained from impact tests when the shaking table was in fixed
position (Table 3). Unfortunately, the impact tests which might
properly reveal the evolution of damping could not be carried
out during the damaging tests because the shaking table could
not be moved down to rest position after each cycle of damaging
excitations.1 On the other hand even changes of such biased
damping still revealed an increase in the damping ratio ξ which
evolved from ξ = 4.5% in intact state to about 7%–9% when
the structure was in the damage state VI (an increase of about
150%–200%).

1 Moving the 6-dof shaking table from the rest to stand-by position required
time consuming tuning procedures which would substantially increase the
overall costs of the experiment.
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Fig. 18. Detail of damaged frame after seismic tests.

Fig. 19. The plot of transfer function between channel A30 and Ax obtained
from random tests for various levels of excitation.

8. Discussion and conclusions

The results of a shaking table experiment aiming at full
scale structural damage identification and modal analysis
of reinforced concrete frames under progressive damage is
presented. The observed reduction of stiffness of the analyzed
reinforced concrete frames with the development of cracks is
a well known phenomenon and the effects of these changes
on dynamic properties of reinforced concrete structures are
the subject of extensive, recent research to develop methods
for non-destructive damage evaluation of r/c structures. The
reported experiment had a similar purpose, testing, this

Fig. 20. The plot of transfer function between channel A23 and Ay obtained
from random tests for various levels of excitation.

Fig. 21. Normalized natural frequency drop with progressive damage states
(see Table 4).

Fig. 22. Simplified 3-dof model of the frame.

time, full scale structures in the laboratory environment. The
substantial loss of relative values of the natural frequencies
was noted as expected. However this fall of natural frequencies
was not uniform. It was fastest for the first natural mode,
slower for the 2nd mode and the slowest for the torsional mode
(Fig. 21). It was particularly interesting to note that the loss
of natural frequencies reached about 10% and still the cracks
could not visually be observed (respective loss of stiffness
equaled 15%). This result is rather promising for the future
applications of the non-destructive damage estimations of r/c
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Fig. 23. Fall of comparative stiffness EJ with progressive damage states (see
Table 4).

Fig. 24. Comparison of the first mode of vibration in intact state and damage
state IV.

structures from their natural frequencies, since we can detect
damage from vibrations before we could note it from ordinary
inspections. The first part of damage accumulation, between the
intact state and the appearance of the first cracks, proved to be
particularly interesting so possible, future experiments should
include more tests in this phase of the experiment. Substantial
increase of damping could be observed during the experiment.
Rather uniform distribution of damage from seismic, inertial
forces among all four columns prevented however the natural
modes to display clear differences in their shape with the loss of
effective stiffness. Only a minor difference for the substantially
damaged structure is indicated in Fig. 24.

Applying a shaking table for reinforced concrete, structural
damage estimation enabled the full scale, heavy structure to
be tested in a controlled, laboratory environment. This shaking
table experiment revealed, however, also some difficulties and
biases in the measurements deriving from the table–structure
interaction effects. From this point of view the present
results can particularly help planning and executing future
identification experiments of r/c structures carried out on
shaking tables.
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