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Abstract

Band-limited, non-stationary random vibrations of a shear beam are studied in order to investigate high frequency seismic effects on
building structures. A solution for the evolutionary spectral density of the shear beam response to a time segment of band-limited white
noise is given in a closed form. The root mean square (rms) and peak response of the shear beam are studied for two characteristic
frequency bands: the conventional 1-4 Hz and higher frequency 4-16 Hz, characteristic for rockburst ground motion. Applying the
criterion of equal excitation intensity with constant rms velocity, both responses are analyzed in detail and compared. The “‘switching
off” fundamental mode for high frequency excitations results in characteristic overshoot of the stationary response level by the non-
stationary rms response and an amplification of the response in the upper part of the shear beam.
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1. Introduction

Typical seismic effects which can affect civil engineering
structures derive from earthquakes which dominate in the
frequency band 0-5 Hz and decrease to zero at about 10 Hz
(see e.g. acceleration records from the database by
Ambraseys et al. [1]). In some situations e.g. of a shallow
focus and near-field record, particular site geology or for
vertical seismic components this upper limit can be
extended, sometime even up to 20 Hz.

However, the structural foundations can be subjected to
kinematic motions also from artificial or semi-artificial
seismic effects like:

e rockbursts,

e nuclear underground explosions,

e distant conventional explosions (e.g. from surface
mining, quarries),

@ close (to structure) explosions of underground ammuni-
tion storages,
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e pile hammering,
e traffic ground motion, etc.

These sources of seismic vibrations differ primarily in the
energy released. Depending on the source-to-site distance
ranging from tens of metres to tens of kilometres, the
actual, generated ground motion may substantially differ
because various frequency bands attenuate differently in
the ground [2,3]. Fig. 1 presents characteristic frequency
bands of surface accelerations for various sources of
seismic ground motions. The lightly shaded areas show
less likely frequencies to contribute and highlight the
approximate character of the presented diagram.

Though excitations deriving from these artificial sources
of seismic excitations result usually in low level vibrations
and (with few exceptions) cause only minor structural
damage, most of these effects occur much more frequently
than natural earthquakes and often generate human
discomfort as well as induce strong equipment response.
And since they differ qualitatively from natural seismic
vibrations they are worth further detailed studies. Indeed,
as the frequency content of excitations increases, the
resulting structural motion departs more and more from
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Fig. 1. A diagram showing frequency bands of various natural and
artificial seismic excitations.

classic seismic vibrations. Thus some conclusions based on
classic seismic engineering may even be misleading. As an
example one can give a particularly difficult problem of
quantitative measures of seismic intensity, still ambiguous
even for natural earthquakes (e.g. [4,5]) or a question how
to assess ground motion intensity from blasts. The latter
one may be of serious financial importance when determin-
ing the origin of so-called cosmetic cracks in the buildings
around an underground mine or a quarry.

While the classic, natural seismic effects on structures are
extensively studied, the structural effects caused by seismic
excitations with higher frequency contents are subject of
detailed analyses only in very few papers (e.g. [6,7]) or more
general analyses in practical context of construction
vibrations or surface mining [8]. These analyses were
carried with the application of deterministic models of
structural vibrations. In present paper this problem is
studied in terms of non-stationary random vibrations and
peak response of a uniform shear beam. This type of
dynamic system represents a specific, simplified model of a
multistory building, a principal object of interests of
seismic engineering codes.

2. Rockburst induced seismic effects versus natural
earthquakes

Rockbursts, together with reservoir induced ground
quakes, belong to a wider phenomenon of ground failures
caused by human activity. In spite of their artificial origin
they produce seismic events random with respect to time
and intensity and in a limited sense also with respect to
place of their origin. The strongest rockbursts may reach
magnitude similar to small earthquakes (M, close to 5) and

are collected by the USGS National Earthquake Informa-
tion Center in Denver (http://neic.usgs.gov) from data
gathered by the world network of seismograph stations.
Such strong quakes are subjects of careful studies to
differentiate them from underground nuclear explosions.
This research, concentrated on teleseismic epicentral
distances (>2000km), is sponsored by various govern-
mental and international organizations to secure proper
implementation of the Nuclear Test Ban Treaty [9].

The energy generated underground by a strong rock-
burst can be similar to an underground nuclear blast or a
small earthquake. However, when comparing the accelera-
tion records of rockbursts and earthquakes some differ-
ences between them appear to be not only quantitative but
also qualitative. After collecting extensive database of
rockburst induced surface and structural vibrations in the
“LGOM” copper basin in South-West Poland, these
differences were identified and analyzed in numerous
research reports and summarized in a recent paper [10].
This study divided the rockbursts into two characteristic

types:

e Events of type I with rather low intensity, return period
of 3—6 months, very short duration (1-2s), and Fourier
spectra shifted to higher frequencies (about 20-40 Hz)
similar to strong surface explosion effects [§].

e Rare events of type II (return period of a few years),
longer duration (about 5s or more) and dominating part
of Fourier spectra below 5-10Hz similar to weak,
shallow earthquakes.

Independent geophysical analyses (e.g. [11]) confirm that
this classification has some seismological reasoning,
ascribing the type I events to routine mining activity while
the second ones are only loosely correlated with the ore
exploitation or even can be small earthquakes triggered in
the nearby faults by the mine activity.' In Fig. 2a,b typical
acceleration time history records of both types of these
events are shown. In Fig. 2e respective Fourier spectra of
the two accelerograms together with an averaged Fourier
spectrum of typical earthquakes [12] are plotted. In spite
that the peak ground acceleration (PGA) of the event type
I reached 101 cm/s? it did not result in any damages, while
the event of type II with PGA = 70cm/s® caused some
damages to buildings in the nearby town: cracks between
panels in prefabricated, 10-story buildings, damage to the
counter-weight of an elevator and some minor damages to
brick masonry buildings. It is interesting to note that this
destructive capacity of the event type Il is reflected in the
respective velocity time histories in the two analyzed cases
(Fig. 2c¢,d). The peak ground velocity (PGV) for type 1I
event equaled about 6.2 cm/s while respective PGV for the
event type I equaled about 2.5 cm/s. The role of velocity as
a much better measure of destructive capacity of seismic
excitations is known for a long time and is explained

'M.D. Trifunac personal communication.


http://neic.usgs.gov

1002

Z. Zembaty | Soil Dynamics and Earthquake Engineering 27 (2007) 1000-1011

a b
1004 ’ 100 { =
_ _ PGA=70cm/s
9 50 PGA=101cm/s % 50 ‘
£ I
S, 8,
5 o W s o 1A
: : Nhkaad
8 ko
8 50 g 50 i
S " rockburst type | | 8 rockburst typ Il |
-100 L, N N I 00 e P e
1 2 3 4 5 6 7 8 9 o1 2 3 4 5 6 7 8 9
time [s] time [s]
c d
6 7 6 : —
g 1 2 PGV=5.2cm/s |
3] PGV=2.5cm/s 3
2 2 % 2 [ A,
E 7 = 1| AN
S ) L S o1 UL Y I UV AN AN
5 ) £ W
o -2 5 2 ] v
g 3 S 3 ]
-4 Rockburst type | -4
4 e e 1 roomumypen |
1 2 3 4 5 6 7 8 9 01 2 3 4 5 6 7 8 9
time [s] time [s]
e
300 B
250 [Rockburst type Il
- earthquakes
n (averaged data)
e Naeim et al. 2001
A—{Rocburst type | hl
N :_V\AZX

8

10

12 14 20

frequency [Hz]

Fig. 2. Horizontal accelerations (a,b) and velocities (c,d) as well as Fourier spectra of natural earthquakes [12] and two records of rockbursts (e). Type I:
(“Sosnowa” station—February 2nd 2001); type II: (“Hubala” station—February 20th 2002).

heuristically by a direct correlation between velocity and
kinetic energy induced in the structure [8]. Looking at Fig.
2e one can notice that the main difference between the two
records can be explained by their frequency content. What
is more, by simply shifting their scale in frequency domain
one can change event type II into type I and vice versa.
Doing this, obviously changes the intensity of these
records. But when accepting the idea of the same intensity
for constant PGV, both records can be scaled appro-
priately.

3. Shear beam structural model and stochastic process
representation of high frequency seismic effects

The structural response to excitations of type Il events
can be analyzed using conventional methods of seismic
engineering, noting their rather short duration (about 5s)
in comparison to typical natural earthquakes (about
15-30s). Some earthquakes, however, also represent short

durations (< 5s) making their records almost identical to
type II rockbursts. When it comes to the type I events their
effects on structures are quite different. The natural
frequencies of the first vibration mode of typical civil
engineering structures, particularly multistory buildings,
usually stay below 5Hz. For example an engineering rule
of thumb makes it possible to assess the lowest natural
period of 10-story building as equal to 1 s (1 Hz) or 0.1 s for
a l-story building (10 Hz) and interpolate natural periods
for the intermediate number of stories. Therefore the shift
of a dominating frequency band from 1-5Hz to about
5-20Hz (compare Fig. 2¢) leads to excitations of higher
natural modes. The unique features of such a structural
response derive not only from the presence of these higher
vibration modes but rather from the lack of the funda-
mental mode(s) in the overall seismic vibrations. To
capture only the essential effects differing higher frequency
vibrations from the conventional ones, the simplest
possible model should be applied, apart from the single
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degree of freedom systems (SDOF) as they do not account
for the presence of various natural vibration modes. Such a
simple structural model can be found among so-called
shear beams which can represent various types of
engineering systems, e.g. tall buildings, dams, or soil
profiles.

Consider a shear beam shown schematically in Fig. 3a.
The equation of motion of such a uniform cantilever shear
beam under horizontal seismic excitations u(f) takes the
following form:

2 3 2
m%ﬂl%ﬂmazzgl—l(%‘j: —miir), (1)
in which K is its shear stiffness, m represents mass per unit
length and c¢; stands for so-called coefficient of external
damping while ¢, represents internal (material damping).
Dividing both sides of Eq. (1) by m leads to the following,
normalized form of the shear beam equation of motion:

g ¢10 o o )

A+t ad g — d = = i), )
where ¢g = \/ (K/m) represents velocity of shear waves
propagating along the beam. As shear beams deflect only in
shear, their natural frequencies occur in a uniform
sequence, similar to the sequence of the natural frequencies
of a tall building (Fig. 3b) and what is also very important
both, the natural frequencies w; and modes ; can be
written in closed form solutions:

. mc
0= Q= Dy (3)
V() = sin (%> . )
cs
a b
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Fig. 3. A shear beam model of a multistory building.

In Eq. (3) H stands for the height of the shear beam from
Fig. 3. The shear beams or shear plates as models of
multistory buildings were subjects of the research by
Todorovska and Trifunac [13], Todorovska and Lee [14]
and Safak [15]. Although the shear beam seems quite
simplistic as a building model, it allowed to analyze
complicated shear wave propagation effects not possible
to explain by the traditional finite element approach
commonly used in seismic engineering. In 1997 Iwan [16]
published a paper in which he proposed a new format of
response spectrum, the so-called drift spectrum which was
based on the measures of maximum drift of a cantilever
shear beam under seismic excitations. Since the interstory
drift (Fig. 3b) is also a good measure of destructive effects
of earthquakes on multistory buildings it is often applied in
seismic building codes. The Iwan’s drift spectrum [16] was
proposed as a specific measure of demand of earthquake
ground motion in the near-field regions of excitations.
Although the shear beam is a rather simple structural
model its seismic response is in good agreement with
complicated finite element analyses of buildings making it a
very convenient structural model as it captures specific
dynamic properties of high buildings while it is still
relatively simple in numerical analyses. In 1999 Chopra
and Chintanapakdee [17] showed that the choice of the
shear beam as a good structural model did not depend on
the type of seismic excitations, while in 2006 Sasani et al.
[18] improved the shear beam wave propagation model to
properly account for dispersive type of damping.

To carry out more general analyses, independent from
the recorded time history and structural type, a model of
the excitation process in form of a random process will be
applied. Two unique features of the ground motion should
be accounted for:

e short duration, requiring the transient effects to be
included,
e the specific spectral content of the excitations.

Consider a stationary pulse of band-limited white noise
(Fig. 4a) with spectral intensity S,. The non-stationary
structural response to such excitations properly models the
strongest non-stationarity possible to be present in seismic
vibrations. The white noise excitations switch on at t =0
and switch off after 7, seconds. Under such excitations the
structural response builds up until # = ¢, and then falls to
zero. To compare structural vibrations with excitations
from different frequency bands and still keep approxi-
mately the same intensity level, the constant PGV criterion
is usually applied (see e.g. [7]). For the purpose of this
analysis, when the shift in the frequency band is not
substantial (Fig. 2) the constant intensity criterion can be
applied approximately by keeping constant root mean
square (rms) velocity of excitations. In fact the constant
peak velocity as a criterion of constant intensity is only
very approximate, experimental rule not always totally
holding in seismic engineering (see e.g. [4]). Under this
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Fig. 4. Band-limited white noise spectrum of the excitation, acceleration
process (a) as well as the respective spectrum of excitation velocity.

assumption the frequency band from w, to w, can be
changed only if the respective rms excitation velocity is
kept constant, which for stationary random processes
means:

wp Wp S . p S
/ SVda):/ —Udcu:/ 20 dw
Wy Wy 0‘)2 Wy 0)2
1 1
= Sy|— — —| = const, (5)

where Sy stands for spectral density of excitation velocity.
The unique features of the high frequency seismic excita-
tions of structures appear then in switching on and off
various natural modes of Egs. (3) and (4) while changing
frequency band (w,; w,), (Fig. 4a) and keeping constant
intensity (equal area of Fig. 4b).

4. Random vibrations of cantilever shear beam under non-
stationary excitations

Consider now solution of equation of motion of the
shear beam from Fig. 3a (Eq. (2)) in form of familiar modal
superposition:

4z 0 => Y200 (6)
j=1

in which (z) stands for modal shapes given by formula (4)
and Qft) represents vibrations of the beam in normal
coordinates. Substituting the normal expansion (6) into
Eq. (2) and taking into account orthogonal properties of
eigenmodes assumed to hold also with respect to damping

coefficients gives

0+ (h+ exdo}) 0+ 020, = —aiih. j=1.23.....

(7
where a; denotes modal participation factor
St wi(z)dz
4 ="y (®)
Jo ¥i(z)dz
Introducing damping ratio of the jth mode defined as
S
§= 5ty ©)

makes it possible to write Eq. (7) in the standard format of
SDOF system

0+ 280;0; + 0?0 = —ajii(n), j=1,2,3,.... (10)

The new damping coefficients from Eq. (9)

C

1=, (11)
m

K = cacs (12)

represent two types of damping [19]: the mass proportional
damping in which case

1

R = 1
=5, k=0, (13)
and stiffness proportional, respectively,

K@j
§=" (=0 (14)

If both y and k are not equal to zero then &; is given by Eq. (9)
and the combined modal damping is applied. Each of these
three damping models makes it possible to decouple modal
responses. However, numerous experiments in real scale have
shown that all of them still leave a lot to be desired.
A preference should only be given to the stiffness propor-
tional damping as most of the experiments indicate an
increase in modal damping with increasing frequency.

Substituting respective Duhamel’s integrals solving
Eqgs. (7) into the modal expansion (6) yields
o0 t
ER J A e /0 it — (o) d, (15)
j=1
where /1(t) are modal impulse response functions:
1 .
hit) = —e 9 sin(wjal), W = wj/1 - &. (16)
Djd

Assume now that the horizontal accelerations are
modeled by a non-stationary random process with zero
mean and spectral representation which can be written in
format of the following Stieltjes—Fourier representation [20]:

ii(f) = /_ ” A(t, w)e" dii(w) (17)

oo

in which A4(7, w) is a deterministic modulating function,
i=.,/(—1), symbol i(w)stands for random function with
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orthogonal increments i.e.:
(dit(1)dii (w2)) = {

(|di}(a))|2) = Si(w)dw forw; = wy; = w,
0 for w # wy

(18)
and symbol () stands for operator of the mathematical
expectation.

The Priestley’s spectral representation (17) can be
interpreted as the decomposition of the excitation process
onto a series of modulated harmonics in both time and
frequency domains. For uniformly modulated process i.e.
when A(t, ) = A(¢) formula (17) reduces to

o0

ii(t) = / A(t, 0)e™ dii(w)
= A(1) / " gion di(w) = A7) (19)

with tilde~denoting stationary process. When A(t,w) = 1=
const then the analyzed process reduces to the stationary one
Le. ii(f) = ().

Substituting spectral representation (17) into the eigen-
series solution (15) gives response displacements

0.9 = S a) [ M) diiw) (20)
= —o0

in terms of response modulating functions:

M;(t,w) = /Ot hi(t)A(t — 7, w)e 7 dt (21

and impulse response functions /hff) as well as the
excitation modulating function 4(z,w). When one considers
the excitation as stationary process switching “on” and
“off”, as it was already assumed in the previous section, the
modulating function A(¢,w) simplifies to a “box-car” form:

0 for t<0,
A=At =< 1 for 0<r<t, (22)
0 for t>1y

In this case integral (21) can be calculated in closed form
and equals:

while H{w) is the modal frequency response function
Hj(w) = [w — w? +2lf,ij] (25)

Eq. (20) together with the orthogonal property (18) can
now be used to calculate any response statistics of the
response process. For example the mean square displace-
ments along the height of the shear beam equals:

aj(z, 1) = Z Z ajaip (2 (2)

J=1 k=1
X /OO M;(t, )M (t,)S:(w) dow, (26)

where S;(w) denotes classic, stationary spectral density of
the stationary process ii(¢) ‘“‘associated” with the non-
stationary one (both processes coincide when A(f,w) = 1),
while the integrand of Eq. (26) represents evolutionary
spectral density of the response:

SN g ()M (1, 0) M1, ) Sy(o).

=1 k=1

Sz, t,w) =

27)

By noting that the shear force along the shear beam equals
F(z) = K0q/0z, it is easy to formulate equations analogous
to Egs. (19) and (20) representing mean square response
and evolutionary spectral density of shear forces along the
beam height:

Fn =5 D
1 k=

oz oz

X / M(t, 0)M(t,)S3(w) do, (28)

Sp(z,t,0) = KzZi aja Y, fwgf’
j=1 k=

x M(t, ) M(t, 0)S;(w). (29)

when the excitation process is stationary, then also the
response is stationary, the integration limits in Eq. (21) are
infinite and Mj(t,0) become modal frequency response
functions:

0 for 1<, _1
M(t,0) = { H(@)1 - P(t,0)] for 0<i<t, @)= [0 — 07 +2iep0] (30)
Hj()[Pi(t — to,w) — Pi(t,w)] for 1> 1, By moving the summation operator from Egs. (26)—(29)
(23) into Eq. (21) one can obtain alternative form of mean
square response:
where 00
1 § o(z,t) = / M(z, t,0)M*(z,t,0)S;(w)dw 3D
Pi(t,0) = —e~ 9! (cos wt — isin wi) —o0
Wijd .
o with
X [(&w; + iw) sin wjgt + wjq oS ;1] (24)
o0 .
Mz, t,0) = Y app(2) fot hi(1)A(t — 7, w)e” " dt for displacements,
Jj=1
Mz, t,0) = o Y, ( ) . (32)
Mp(z,t,0) = K a)—2— ’ Jo hi(0)A(t — 1,w)e™™"dr  for shear forces.
j=1
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5. Peak structural response

To properly assess the structural response one needs to
know estimations of peak response rather than only mean
square response derived in the previous section. For
stationary random vibrations or the non-stationary ones
but still with the duration of excitations much longer than
the fundamental natural period the classic peak factors by
Davenport [21] or Vanmarcke [22] can be applied with
acceptable, though still approximate results. This is,
however, not the case for analyzed here vibrations of
typical building structures (0.5s<7;<2s) under short,
1-2 s high frequency excitation pulses like the rockbursts or
similar loads. In this case the peak response can be
obtained only by using numerical estimations, e.g. the
formulae of Yang [23] who proposed to calculate the first
excursion probability of double, symmetric barrier +/

P(A)=1-—exp [— /00 v(t, ) dr} (33)
0

as a function of time dependent failure rate v(z,4):

— eXp[_Ve([a ;“)/(2V+(ts /1))]
1 —vi(t,2)/v4(2,0)

in which v,(z,4) stands for mean number of up-crossing
level 1 by the response process while v.(¢,4) represents
respective mean number of crossing level 4 by the envelope
of the response process. The mean number of crossing level
A with positive slope by the response process ¢(¢) can be
obtained using the familiar Rice formula, after integrating
the joint probability density of the process ¢(f) and its
derivative §(7):

v(t,2) = 2v,(t,7) ! (34)

Vet ) = /0 P 1)dd. (35)

Assuming in this case two-dimensional standard Gaussian
probability density, substituting it to the above equation
and carrying out the integration gives

12
R 0 / A
V+(Z, /L) = 277:6; 1— pg]q €Xp <— ﬁ)
q q

x {e™" + o[l + erf(®)]} (36)
in which
v=— gy =0y = G0,
og1/2[1 — pfm]

(g(Dg(1))

Table 1

A similar analysis can be done for the envelope crossing
rate v, yielding approximate relation:

“h /72— V%/U(ZI )2 38)
Ve(t,)) = —~————exp | ——|,
¢ \/27w§ P 203

where y; are time dependent spectral moments:
© . .
=2 [ MG+ o) Sio)do for j=1.2
0

(39)

and

. 0 _ImM(zt w)
tyw)=—tan | ——2 2

(t0) = 5 a0 R e M. 1)
The peak value can be defined as a value of 1 correspond-
ing to respective probability of excursion. For example the
median peak value Ays corresponds to probability of
outcrossing domain =+ 4 with probability 0.5 i.e.:

(40)

P()=05=1—exp [— /0 ” v(t, Jo.5) dr] (41)

in which the unknown median peak value is in the
integrand. This equation can only be solved numerically.
In an analogy to the Davenport’s peak factor [21] one can
define the median peak factor as the ratio of median peak
value to the maximum rms response i... ros= Ags/
maxaoyg.s.

6. Numerical analyses

Consider the shear beam from Fig. 3, with height
H = 35m. The main parameter which accounts for both
elastic and inertial properties of the shear beam is the value
of velocity of shear waves propagating along its height, cs.
The values of ¢g ranging from 100 to 200 m/s are commonly
met in the literature [13-16]. In this paper the value of
¢s = 170m/s has been applied. The cantilever beam with
such parameters can roughly represent a 10 story,
prefabricated building which is usually built with the same
cross-section along its height. The first eight natural
frequencies and periods were calculated for these values
of H and cs using Eq. (3) and are given in Table 1. In the
detailed numerical analyses which follow, formulas
(26)—(41) are applied. In all the following calculations the
value of damping ratio ¢ = 0.05, the same for all the modes
of the analyzed beam is applied. It is a violation of the
modal decoupling requirements but keeping constant
damping makes it easier to identify the contributions
of various modes regardless of the applied damping

The first eight natural frequencies and periods of the analyzed beam with H = 35m and ¢s = 170 m/s

Mode number 1 2 3 4 S 6 7 8
Natural frequency (Hz) 1.21 3.64 6.07 8.50 10.93 13.36 15.79 18.21
Natural period (s) 0.824 0.275 0.165 0.118 0.092 0.075 0.063 0.055
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hypothesis. Such assumption is also recommended in the
recent paper on shear beam seismic vibrations by Sasani et
al. [18]. Nevertheless, as suggested by one of the Reviewers,
the effect of the applied damping model on the shear
beam response is studied in detail at the end of this chapter
(Fig. 10).

To model the characteristic effect of frequency shift in
excitations as described earlier (Fig. 2), two frequency
bands are considered:

(a) from 1 to 4 Hz (dominating spectrum of earthquakes or
rockbursts type II),
(b) from 4 to 16 Hz (high frequency effects of rockbursts

type ).

The cut-off frequencies of band-limited white noise can be
obtained just by multiplying them by a single ““scale” factor
s =1 or 4 as required in formula 5 (Fig. 4). It can be seen
from Table 1 that in the first case only the first two natural
modes will be excited while for the second case only modes
3-7 will contribute in the vibrations.

As the shear beam drift is of our particular interest, the
actual shear force response which is a direct function of the
drift (F(z) = K0¢q/0z) will be analyzed here in detail. The
value of shear at z =0 plays particular role in seismic
engineering as the base shear—the approximate seismic
force to be distributed along the height of the building
being designed. In addition to the base shear, a value of the
shear force at z = 31.5m is analyzed more carefully here as
it corresponds to the drift of the last floor of the equivalent
10-story building.

To check the basic characteristics of the shear beam
response the stationary spectral densities of the shear forces
for z=31.5m and z=0 are shown in Fig. 5a and b,
respectively. Substantial domination of the first vibration
mode can be seen from this figure. For z =31.5m the
contribution of second, third and fourth modes is slightly
more evident. The frequency band 4-16Hz was also
displayed in zoomed in-sets in this figure. It can be seen
that for the frequency band limited to the range 4-16 Hz
the modes third, fourth, fifth, and sixth (now the first,
second,... etc.) do not attenuate as fast as for the low
frequency excitations.

Now consider the non-stationary response of the shear
beam under band-limited short time, white noise excita-
tions. The duration of excitation was chosen to be 1.5s,
typical for the type I rockbursts and comparable with the
first natural period of the analyzed shear beam. In Fig. 6
the evolution of the spectral density of the shear force at
z = 31.5m is shown as it changes with time. It can be seen
as the response changes from the broad-band at the
beginning, to more and more narrow-band as time passes
on, particularly after the excitations seized (¢>1.5s).
Again, for the frequency band 4-16Hz (Fig. 6b) the
contributions of subsequent modes become more uniform.
The early moments of high frequency excitations represent
even more broad-band response than for the low frequency
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Fig. 5. Spectral density of stationary shear force response at height
z=31.5m (a) and z=0 (b) with a zoomed box for frequencies over
25rad/s.

one. In Fig. 7 the rms shear response is shown for base
shear (b, d) and for z = 31.5m (a, c). Figs. 7a,b show the
response for the frequency band 1-4 Hz while Figs. 7c,d
show the rms shear response for frequency band 4-16 Hz.
In all analyzed cases the response gradually increases until
t = 1.5s and then slowly decreases, with some oscillations
representing the fundamental period of the structure. For
the low frequency band (a, b) and such short duration of
excitations (1.5s) the rms response starts to decay well
below the stationary response level. However, for the high
frequency excitations the non-stationary response reaches
its maximum already at the beginning of excitations,
substantially overshooting the stationary response level.
The median peak factors (Eq. (41)) are higher for the high
frequency excitations: rygs = 3.75 for z = 31.5m and 3.77
for z = 0. For low frequency excitations these values equal
3.25 and 2.94, respectively. This means that the distribution
of peaks is practically the same for base shears and
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z=231.5m and generally much wider for the high
frequency excitations. In Fig. 8 the probability densities
of the first passage time are shown for the base shear
responses and low frequency excitations (Fig. 8a) as well as
for the high frequency ones (Fig. 8b). Both plots depend
first of all on the rms responses, but also on the other
parameters of response (rms velocity, correlation: force
and its velocity as well as two spectral moments y; and
y>—Eq. (39)). The maximum response occurs at the end of
excitations for the low frequency excitations, so the
maximum of probability density occurs also at this
moment. When the excitations frequency band is the
higher one, the maximum response occurs soon after
the beginning. It is reflected in the respective plot of the
probability density function. In both cases of the excita-
tions one can observe the fast decrease of the probability
density. Such fast decrease of the integrand makes it
possible to include only limited duration of response and
limits the numerical efforts. In Fig. 9 the maxims of rms
non-stationary responses and respective median peak
values are shown as functions of z. The stationary rms
response level is shown for comparison too. For the
assumed criterion of constant peak velocity the high
frequency excitations result in smaller response (Fig. 9b)
than for the low frequency effects (Fig. 9a). In Fig. 10 the
sensitivity of the peak response to assumed damping ratios
and models are shown. For mass and stiffness proportional
damping the value of the first modal damping ratio was
assumed, while the remaining modal damping ratios were
calculated according to Eqgs. (13) and (14), respectively. As
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could be expected the assumption of stiffness proportional
damping gives the lowest response in both cases of low
frequency excitations and the high frequency ones. On the
other hand the assumption of mass proportional damping
gives the highest response in both analyzed cases. When
constant modal damping is assumed the structural
response under high frequency excitations is less sensitive
to the damping variations than the response under
conventional, low frequency excitations. However, when
looking at the separation between the two applied models
the separation between them is much wider when the high
frequency excitations are applied. The assumption of
stiffness proportional damping results in very low response
for most of the range of analyzed damping ratios. It is so
because in this case all the modal damping ratios are rather
high for all the higher modes.

In Fig. 11 the base shear response is analyzed as a
function of the shear beam height. The range of heights
from 3.5 to 35m (single-story to 10-story) corresponds to
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Fig. 9. Max rms shear, median peak value and stationary rms shear as
functions of height for: scale factor s = l—spectral bandwidth 1-4Hz
(a,b); scale factor s = 4—spectral bandwidth 4-16 Hz (c,d).
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changes of the first natural frequency from f; = 12.15 to
1.21 Hz (natural period T} from 0.0823 to 0.823s). To
study the effect of low frequency excitations the stationary
rms base shear is analyzed in detail (plot a). Since the peak
response is a direct function of the elapsed time there is no
single number for the stationary median peak value. Thus
to compare the stationary response with the short, non-
stationary one, the duration of 15s was chosen to calculate
Aos in this case (plot b). It is long enough to ensure
stationarity of response for structures with 7 < 1s. Obser-
ving plots (a) and (b) from Fig. 11 one can note an increase
of both stationary rms base shear and its respective peak
values for low frequency excitations. This increase is
particularly prominent for H from 7 to 14m i.e. for f
from 3.04 to 6.06 Hz (T from 0.165 to 0.329s). However,
when it comes to the base shear response to high frequency
excitations an opposite effect is observed. For low values of
H (3.5-10m) this response is rather high and then drops
down substantially for H greater than 10—-15m that is for f)
from 3.04 to 4.05Hz (T 0.247-0.329s). This is an effect of
the domination of higher modes in the response for greater
values of H. On the other hand, for H<15m the first
modes occur at higher frequencies (4-12 Hz) so they are
now excited by high frequency excitations as the principal
modes, like during the low frequency excitations. It should
be noted, however, that though some increase in the
response of low buildings can be observed during high
frequency seismic excitations generally these structures
sustain the seismic excitations quite well. It is so because
the 1-2 story buildings are usually much stiffer than it
could be deduced from their shear beam model. The shear
beam model is less adequate for these structures than it is
for the high buildings due to much stiffer construction of

the low buildings. The calculations of seismic response by
Finite Element Method and observations of damages
during earthquakes and rockburst excitations confirm the
above reasoning.

7. Final remarks and conclusions

Short duration, high frequency seismic effects on
structures represent specific type of excitations in civil
engineering. Critical contribution to the overall seismic
structural response is contributed by the frequency band
below 5 Hz. A shift in the ground motion Fourier spectrum
to higher frequencies results in excitations of higher
eigenmodes of the structure. If at the same moment, the
excitation spectrum lacks the low frequency band (<5 Hz)
then the structural response may substantially be changed.
The analysis of a wide range of problems regarding this
type of structural dynamics was dealt with in the paper by
Lu et al. [7], particularly for very high frequency shifts
characteristic to blast ground motion. Present paper aimed
at intermediate shift of excitation frequencies (4—16 Hz)
and at analyzing non-stationary random vibrations of a
shear beam as a simplified model of multistory building.
Unlike for the conventional random vibrations which
slowly build up and for short excitations their rms values
may never reach the respective stationary level before the
excitations are seized (Fig. 7a,b), the high frequency effects
cause the rms response to almost instantly cross the
stationary level, resulting in characteristic over-shoot
phenomenon (Fig. 7c,d). When comparing the Ilow
frequency vibrations with the high frequency ones (with
the same excitation velocities) the conventional seismic
excitations result in higher response, but the dominating
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contribution of higher modes of vibration results in specific
increase of the high frequency response in the upper part of
the shear beam (Fig. 9b). For higher frequencies of
excitations the structural response is more susceptible to
the choice of the damping model. When constant modal
damping is assumed the structural response under high
frequency excitations is less sensitive to the damping
variations than the response under conventional, low
frequency excitations. Albeit the low frequency excitations
affect more substantially higher buildings, the high
frequency effects cause greater shear response to the lower
buildings. It should, however, be pointed out that the lower
buildings are generally less vulnerable to any dynamic
effects as their overall stiffness is greater than for the higher
buildings.

Most of the high frequency excitations met in practice do
not cause substantial structural damages but evidently
affect comfort of people living in the nearby buildings. In
addition these high frequency vibrations transmitted from
the soil cause particular response of equipment inside the
buildings. For example during the rockburst induced
vibrations, many cases of falling furniture are reported
and are subject of financial compensations by the mine
authorities.
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